
The Multiple Change-Points Problem for the Spectral Distribution

Marc Lavielle; Carenne Ludeña

Bernoulli, Vol. 6, No. 5. (Oct., 2000), pp. 845-869.

Stable URL:

http://links.jstor.org/sici?sici=1350-7265%28200010%296%3A5%3C845%3ATMCPFT%3E2.0.CO%3B2-H

Bernoulli is currently published by International Statistical Institute (ISI) and Bernoulli Society for Mathematical Statistics and
Probability.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/isibs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Apr 2 16:14:25 2008

http://links.jstor.org/sici?sici=1350-7265%28200010%296%3A5%3C845%3ATMCPFT%3E2.0.CO%3B2-H
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/isibs.html


Bernoulli 6(5), 2000, 845-869 
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We consider the problem of detecting an unknown number of change-points in the spectrum of a 
second-order stationary random process. To reach this goal, some maximal inequalities for quadratic 
forms are first given under very weak assumptions. In a parametric framework, and when the number 
of changes is known, the change-point instants and the parameter vector are estimated using the 
Whittle pseudo-likelihood of the observations. A penalized minimum contrast estimate is proposed 
when the number of changes is unknown. The statistical properties of these estimates hold for strongly 
mixing and also long-range dependent processes. Estimation in a nonparametric framework is also 
considered, by using the spectral measure function. We conclude with an application to electro-
encephalogram analysis. 

Keybt~ords:detection of change-points; long range dependence; maximal inequality; nonparametric 
spectral estimation; penalized minimum contrast estimate; quadratic forms; Whittle likelihood 

1. Introduction 

Estimating change-points in the spectrum of a time series has been widely studied as a 
particular topic of the general change-point problem: see, for example, Brodsky and 
Darkhovsky (1993) or Basseville and Nikiforov (1993) for a thorough survey. 

In Picard (1985) and later on in a series of articles by Giraitis and Leipus (1990; 1992), 
a posteriori detection of a change in the spectral distribution function is considered, based 
on a Kolmogorov-Smirnov type test statistic. Functional limit theorems under the null 
hypothesis of no changes are given under very general conditions. Giraitis and Leipus 
(1992) also consider the behaviour of the statistics under local alternatives. These results are 
based on a functional limit theorem for quadratic forms under L* type conditions. Brodsky 
and Darkhovsky (1993) consider additionally the problem of multiple changes and construct 
consistent estimators for the number of changes for strongly mixing sequences, under 
certain conditions on larger-order cumulants. 

For strongly dependent processes the changes in the spectrum may affect the long-range 
dependence parameter. Depending on the value of this parameter, limiting processes can 
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change - see, for example, Fox and Taqqu (1997) and Terrin and Taqqu (1991) - and thus 
the distribution of the test statistic. 

Following the papers of Lavielle and Moulines (1999) and Lavielle (1999), on detecting 
change-points in the marginal distribution of a sequence of (possibly dependent) 
observations, we study in this paper the detection of multiple change-points in a piecewise 
stationary centred time series which may exhibit long-range dependence. This kind of 
problem arises, for example, in network data where it is reasonable to assume that the 
dependence structure of the data changes in time (Taqqu et al., 1995). 

We assume that the distribution of the process depends on a parameter 8 that changes 
abruptly at some unknown instants (t;, j 2 1). To obtain asymptotical results, we consider 
here the case where the sequence ( t?)  depends on the volume of the observations. If 
the number of segments K* is known, change-points are found together with the sequence 
of parameters (87, 1 6 j 6 K*) by minimizing a certain contrast function constructed on 
the basis of the Whittle pseudo-likelihood of the observations. This approximation of the 
likelihood implicitly asserts that we are assuming that observations in different time 
segments are asymptotically uncorrelated. Furthermore, we also require that the fourth-order 
cumulants decay fast enough. 

Assume there exist 0 < zl < . . . < ZK*-, < 1, such that t,* = [nz?]. Then the length of 
each segment tends to infinity at the same rate as the total number of observations* (ti+, - t? = O(n)). It is shown, under very weak conditions, that the minimum contrast 
estimator of the normalized change-points sequence (t*n,l/n, . . . , t^n,K*-,/n) converges to the 
true normalized sequence (z:, . . . , zi,-,). The estimated vector of parameters also 
converges to the true vector of parameters (87, 1 s j s K*). Furthermore, it is shown that 
the errors of location in,j- t,* = Op(l), for a wide class of (weakly or strongly) dependent 
proceses. 

When the number of changes is unknown, it is estimated by minimizing a penalized 
contrast function. The penalization term has the form /3, K, where K is the number of 
segments, that is, the number of parameters in the model, and where (P,) is a positive 
sequence decreasing to 0. Penalized estimation has been considered, for example, when 
estimating the order of an ARMA process (see Akaike 1974; or Hannan 1980), or the order 
of a mixture of populations (see Dacunha-Castelle and Gassiat 1997). Then this problem of 
change-points detection can be seen as a problem of model selection via penalization, as in 
Lavielle (1999). We show that the estimated number of change-points converges to the true 
number of change-points if /3, goes to 0 at an appropriate rate that depends on the 
covariance structure of the process. 

This kind of method also extends to semi-parametric type tests. Indeed, if we consider 
that the spectral distribution function changes abruptly in certain given frequency bands, we 
can build a contrast function by using the integrated periodogram. An application to 
electroencephalogram (EEG) analysis illustrates the ability of the proposed method to detect 
changes in the electrical activity of the brain. 

In Section 2 we present some useful results dealing with quadratic forms, based on 
certain maximal inequalities for sums of (possibly dependent) random variables due to 
M6ricz et al. (1982). Sections 3 and 4 are respectively devoted to the parametric and 
nonparametric contexts. 
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2. Some preliminary results for quadratic forms 

In order to give asymptotic results concerning the estimated change-points, we must control 
uniformly in probability the quadratic forms which appear in the empirical contrasts. Here, 
uniformity is both with respect to the parameter space and the change-point instants. A first 
result, given in Lemma 2.2, deals with uniform inequalities in probability over all the 
possible change-point configurations. Uniform results with respect to the parameter space are 
then established in Lemma 2.3. 

2.1. Some maximal inequalities for quadratic forms 

Let (X,, t E N) be a real second-order stationary process with zero mean and autocovariance 
function y. Let (b(u) ,  u E Z)be a bounded sequence of real numbers such that b(u) = b(-u), 
and such that C z b ( u ) y ( u )<m. 

We consider here the quadratic form Qlm defined by 

Then, for any 0 6 m 6 n, we have 

Q I : ~= Ql:m + Qm+l:m + 2Rm,n, 

where 

In this section, we are interested in controlling and R,,, in probability. To do this, 
we assume the following hypotheses are satisfied: 

Hypothesis 1. 
(i) There exist a D >  0 and a P 2 1 such that, for any u 2 0, Ib(u)l 6 D ~ P P .  

(ii) There exist a C >  0 and an a >0 such that, for any u a 0, ly(u)l S Cu-" 
(iii) There exists a K >0 such that, for any ( t ,  s, t ' ,  s t )  E Z4, 

Icum(Xt, Xs ,  X,,, X,,)I 6 ~ l t- sI-'ltf - s'I-". 

We have the following results: 

Lemma 2.1. Under Hypothesis I ,  for any E >0, let 

4 - 2 a  - 2P if a + p < i ,  2 - a  i f a < l ,  

i f a + p = $ ,  h ' =  i f a = l ,  

if a +/3>;; if a >  1. 
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Note that 

On the other hand 

because 1 - 2/3 - a <-1. This yields the required bound 

Using Lemma 2.1, we can now obtain some usehl maximal inequalities: 

Lemma 2.2. Under Hypothesis 1, for any E >0, let a = max(4 - 2a  - 2/3, 1 + e) and 
a' = max(2 - a ,  1 + E ) .  Then, there exist C2>0, C3>0,  D2 >0 and 4 >0 such that, for 
all n >0, for all m >0, and for all 6 >0, the following inequalities are satisjied: 

max max IRk.r1>6 
I S k <  n k+lSlSn 

Proof: First we show that, under the hypothesis of Lemma 2.2, there exists a constant A >0 
such that, for any 6 >0 and for any positive and decreasing sequence dl 2 d2 a . . . 2 

dn >0, 

max d k ) Q ~ : ~ l>8 
I s k S n  

t=1 

This result is an extension of the following Hajek-Renyi type inequality for partial sums (see 
Levielle and Moulines 1999): 

Theorem 2.3. Let (X,, ,  E N) be a sequence of zero-mean random variables. Assume that 
there exist A1 >0 and 1 <a <2 such that, for all 1 S i j,  E ( ~ : = , X , ) ~  i + 1 la.6 Al J j  -
Then, there exists a constant A2 2 1 such that, for any n a 1, for any 6 >0, and for any 
positive and decreasing sequence d l  * d2 2 . . . 2 dn >0, we have the inequali@ 
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For any 1 G r 6 k 6 n, we can write Q l l k= Ql:,+ Q,+l:k + 2Rr,k. Using Lemma 2.1, 

E R ~ , , ,s E(@: ,  + G:,+ QZ,+l :k )  

s 2Cl k". 

k
On the other hand, Rr.k can be expressed as a sum: Rr,k = C t = l q r , t  where qr,l = 
qr,2 = . . . = q,,, = 0 and q , ,  = C;=:=,X,X,b(t - s )  for t > r. Thus, the maximal inequality 
proposed in Theorem 2.3 holds for Rr,k: there exists D >0 such that 

na-l  n 

max d , ~ , , k > d )  s D-C~;.
1 S k S n  d2 t=l 

Following the proof advanced by Moricz et al. (1982), we have 

mar d k l ~ l : x  s P(  man dxlQ~:kl + P(drQl:rl> ~ 1 6 )  > d )  >d 
I S k S n  l<k<r-

where pi, p2 and p3 are positive numbers such that pl + p2 + p3 = 1. By induction, we have 

Choose r such that ( r  - l ) " - ' ~ : : : d :  nu-'C:=,d;/2" and ( n  - r ) " - '~ := ,+ ,d :  G 
nu-' C:=,d:/2". Then, since ( d l ) is a decreasing sequence, rad;  G ra- 'C:=, d: and 

Now choose pz close enough to 1 and C2large enough, in order to ensure that 

(note that this is always possible, since a > 1). 

We obtain (4) with dk = 1 for any k 3 0. Setting dk = I lk ,  we obtain 


Then (5) is a direct consequence of (8),  since 
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Finally, (6) and (7) are shown by using the same kind of arguments as for (4) and (5). 

2.2. Uniform convergence of parametric quadratic forms 

Assume now that the function b depends on a parameter 0 that belongs to a compact subset 
O of Rd. For any 0 E O, assume that (b(u,  O ) ,  u E N) is a bounded sequence of real numbers 
such that b(u, 0 )  = b(-u, 0 )  and C z b ( u ,  O)y(u)<m. 

For any 0 E $ for any n >0 and any 0 a m a n, set 

We assume that the following hypothesis is satisfied: 

Hypothesis2. 
(i) For any 0 E O, Hypothesis 1 is satisjied. 

(ii) The function b is continuously differentiable with respect to 0 (on the interior of 0). 
Furthermore, there e.xists a D' >0 such that, for any u 2 0, for any 0 E O, 
Ideb(u, 0 ) /  D'U-' .  

Lemma 2.4. Under Hypothesis 2, for all 6 >0, 

sup max max 
I S k <  n k+lslSn n 
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ProoJ Equation (9) follows directly from the following two remarks: 

(i) By using Lemma 2.2, for any 0 in 0,for any 6 > 0, we have that, under Hypothesis 
2, 

(ii) 	For any E > 0, let /Ql:k(O)- Ql,k(@')l, where 11.11 is thew(k, e) = s ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ , n - ~  
Euclidian norm. Then, there exist two sequences Kv) and e(v), Hv)  4 0 and E(V) -+ 0 
when v 4 m, such that l i m ~ ( m a x l , ~ < , o ( k ,  E(v))>((v)) = 0. Indeed, let el,, be the 
quadratic form defined in (1) with b(u) = up'. Under Hypothesis 2 there exists C >  0 such 
that 

By Lemma 2.1 we have n-' maxlsksn l~ l :k l  converges to 0. Now use Hypothesis 1 to 
conclude that C 1 y(u)l /u converges. 

We show (lo), (11) and (12) in exactly the same way. 

3. 	Parametric estimation in the presence of change-points 

3.1. Description 	of the model 

Assume that the spectrum of the zero-mean process X = (X,, t E Z)depends on a parameter 
0 which changes abruptly at some unknown instants t r ,  t;, . . . , t i*-,  with 
0 < tT < . . . < t*,,-, < n. These changes affect the covariance of process X, and we 
furthermore assume the process is asymptotically uncorrelated before and after a change. 
More precisely, we assume the following hypothesis is satisfied: 

Hypothesis 3. 
(i) 	 There exists a vector (Or, . . . , 0;*), such that @"takes its values in the interiov qf 

a cornpact subset O of Rd for any 1 j G K*: and such that 

E X , X , = y ( t - s , O j )  * i f t , * _ , + l c s S t c t , * .  

(ii) 	 There exists a G > 0 and a y > 0 such that 


EXsXt < Glt - slpY if there exists 1 a j G K* - 1 such that s a t,* < t. 


(iii) 	 There exists a K > 0 such that for any (t, s, t', s ') E Z4, 


Icum(Xt, X,, Xt,, Xs,)l ~-lE(XtXs)E(XtfXs,)l. 


As an example, consider the AR(1) process X, which is the solution to the following 
equation: 
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where ( ~ t )  is a white noise, and where 3* is a time-varying piecewise constant finction that 
takes its values in (- 1, +I). This example is a particular case of the more general problem of 
estimating the function 3* which has been considered by Dahlhaus (1997), assuming that 3* 
is smooth enough to guarantee that the process is locally stationary. 

We define the configuation of normalized change-points by z* = (z:, . . . , z;,-,), where 
t; = [nz;],  and 0 < zl < . . . < z,*-, < 1. The problem consists in estimating the vector of 
parameters 8* and estimating the configuration of normalized change-points z* from n 
observations X I ,  X2, . . . , X,,. The aim of this section is to study the behaviour of an 
estimator of (z*, 8*), as n + m. 

We use index j for the true configuaration of change-points t* = (t;, 1 < j 6 K* - 11 
and for the true sequence of parameters 8*  = (Or, 1 S j 6 K*). We use index k for any 
other configuration. We denote by T; the set of indices that belong to segment j in the 
configuration t*, and by Tk the set of indices that belong to segment k in the configuration 
t: 

The lengths of T,* and Tk are respectively n; and nk. Denote by Tk/= T/*n Tk the vector of 
indices that belong to segment j in the configuration t* and to segment k in the configuration 
t. The length of Tb is n k ~  

The dependence with respect to n of t;, tk, T;, Tk and Tb is omitted for notational 
convenience. For the same reason, the dependence of Tk and Tb with respect to the 
configuration of change-points t is also omitted. 

Let f(A, 0;) be the spectral density of X in segment j of the true configuration 
t* = (t:, . . . , t ~ . - l ) .  For any v > 0, let Z(V) be the set of Lipschitz functions of order v 
over (-n, n]. That is, g E %(v) if there exists a K such that + p )~up~,(- , ,~lg(A -

g(A)l G KIPI~.  
We shall assume that the following hypothesis on f and y is satisfied: 

Hypothesis A 
(i) The parametrization is proper: if 0 # 0' then f (A, 0) # f (A,0') over a set of 

positive Lebesgue measure. 
(ii) O is compact and, for any 1 < j < K*, 0; E 6, the interior of O Rd. 

Furthermore, 0; # Oi*,, for any 1 6 j 6 K* - 1. 
(iii) I /  f(A, 0) is three times continuously differentiable with respect to 0. 
(iv) For any 0 E O, there exists ~ ( 0 )such that, for all 1 6 i, 1 < d, and all E > 0, 

(v) There exists a function a:  0 + (0, +oo) such that, for any u > 0 and any 
1 S j < K * ,  
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A couple of comments are in order. Concerning Hypothesis 4(ii), it might sometimes be 
useful for practical purposes to assume that there exists a minimum jump size, independent 
of the true configuration 8*. That is, there exists a A such that 

inf - 8; 1 1  3 A. 
l < j < ~ * - 1  

However, as the number of change-points is fixed there always exists a constant c*, which 
bounds this minimum jump size. 

Turning to Hypothesis 4(iv), call b(k ,  8 )  the kth Fourier coefficient of l / f ( . ,  8) .  
Following this notation, call de,b(k,  8 )  and d&,b(k, 8 )  the kth Fourier coefficients of 
ae,1 /f (., 8 )  and 8; 1/f (., 8), respectively. Then Hypothesis 4(iv) yields that for all E >0, 
b(u,  8 )  = ~(u- l - " ' ) :  ds,b(u, 8 )  = ) and 1.~ ( u - ' - f l ' ) + ~  b(u, 8 )  = 0(u-'-dB)+& 

Hypothesis 4 is satisfied for a wide class of second-order stationary processes. In 
particular, it is satisfied if X is an ARMA process. It is also satisfied if X is a piecewise 
strongly dependent process according to the following definition: 

Dejinition 1. We say that Y = (Y,, t 3 0 )  is a strongly dependent process if the following 
hold: 

(i) 	Y is a centred linear process: there exists an independently and identically 
distributed sequence of centred random variables 5 with fourth-order cumulant 
K~ < 3 ~ ,and a sequence (a,) of 12(Z), such that formally Yt = CsEza,Ct-,. 

(ii) The spectral density f 	(A ,  8* )  of Y ,  8* E O, belongs to a parametric family such that 
f (A ,  8 )  and 1 /f (A, 8 )  can be written as 

where a:  O -+ (0,  1 )  is three times continuously differentiable, C1 and C2 are strictly 
positive and three times conitinuously differentiable with respect to ( A ,  8), and L1 and 
L2 are strictly positive and slowly varying functions which are three times continuously 
differentiable with respect to (A, 8), for A # 0. 

In particular, we have that (see Fox and Taqqu 1987) the covariance function of Y ,  under 
Definition 1 ,  has the form 

Furthermore, if a, = O(ls(- ( 1  + u(8*)) /2) ,then Hypothesis 3(iii) is satisfied. 
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3.2. Estimation when the number of change-points is known 

3.2.1. The estimator 

For a given number of segments K ,  let .TKbe the set of configurations of change-points and 
O K  the space of the parameters, 

.FK= { t  = ( to ,  t l ,  . . . , tK) ,  to = 0 < tl < t2 < . . . < t~ = n ) ,  

O K { ~  (01, 02, . . . , O K ) ,  0k E @),= 

where O ws introduced in Section 3.1. 
Let t E .Tti be any configuration of the K - 1 change-points, and let 8 E O K  be any 

vector of K parameters. Then, for any 1 G k < K, let 

2 

In(Tk,I.) =-

be the periodogram computed over the window Tk, and 

be minus the Whittle log-likelihood of (X , ,  t E Tk)  evaluated at dk. 
For a given configuration t of Tti,let en(Tk) be the value of 8 E O that minimizes 

Wn(Tk, d) ,  that is, e n ( ~ k )is the Whittle estimate of 8; computed over the kth segment of 
t .  Define ~ ~ ( 0 )by 

Under Hypothesis 4(i), we have that 8; is the value of 8 E O that minimizes wo*(8).For any 
E >0 and 1 G j G K, set 

I 

Note that when the change-point sequence is known, the Whittle estimate of 0; converges at 
rate ni

~ ( o ; ) / 2 - 1  
, for any 1 s j G  K*: 

Lemma 3.1. Under Hypothesis 4, there exists a C >0 such that, for any 1 G j < K*, 

Remark. We shall see in Theorem 3.4 that we obtain the same rates when the change-point 
sequence is unknown. 
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ProoJ The proof uses standard minimum contrast estimator arguments. For any 1 s j s K*, 
for any 8 E 0 ,  set 

Here b(u, 8 )  is the uth Fourier coefficient of l / f ( . ,  8) .  The estimator O,(T?) minimizes 
w,(T;, 8 ) .  On the other hand using equations (13)-(16), w,(T;, 8 )  can be decomposed as 
a deterministic contrast function plus a random fluctuation: 

It is enough to see that w,;(8) reaches its minimum for 8 = 87 and that the random 
fluctuation S,(T~*,B)/n? tends to 0 in probability, uniformly in 8 ,  at the specified rate. 

In many interesting cases (under mixing conditions, or under Definition I ) ,  ~ ( 8 ; )= 1 
and under some mild additional technical conditions a central limit theorem is available: 
there exists a d X d limiting covariance matrix r(8;)  such that 

See Giraitis and Surgailis (1990) or Ludefia and Lavielle (1999) for an extension to random 
fields. 

Define Jn( t ,  6 )  as 

When t* is unknown the estimate (in,6,) is the value of ( t ,  6 )  that minimizes J,(t, 8) in 
def

.TKX O K .Thus, = O,,(T,,,~) is the Whittle estimate of 8: computed in the segment k of 
the estimated configuration of change-points in,with T , , , ~= { t  E B, + 1 s t 6 in ,k) .  

3.2.2. Consistency of the estimator 

We first establish the consistency of the estimator when the number of segments K* is 
known, but when the location of the change-points is unknown. 

Theorem 3.2. Let inbe the estimate of the change-points sequence and 8, be the estimate of 
the parameters in the different segments, obtained as the solution of the following 
minimization problem: 

where J,, was dejined in (17). Let a ,  = ?,,/it. Then, under Hyptheses 3 and 4, (a,,, 6,) 
converges in probability to (z*, 8*) .  
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ProoJ: For any 1 1'- k, k' S K, for any 1 S j, j' 1'- K*, for any Ok E 0, set 

Here b(u, O k )  is the uth Fourier coefficient of l /f ( . ,  13~).Then, using equations (13), (14), 
(15), (18) and (19),we have 

where 

J=1 j=1 j ' f j  

For any (8,  8 ' )  E 0 X 0, set 

Observe that v(O1, 8 )  a 0 and u(8', 8 )  = 0 if and only if 8' = 8, under Hypothesis 4(i). 
For technical reasons, instead of Jn(t,  8 )  we will use the contrast function CTn(t, 8 )  

defined by 

Since Jn(z*, o*) is a constant, (in,6,) also minimizes Un(t,  6).  
Using (22),we can write 
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Equation (23) can be interpreted as a deterministic term u(t ,  0) plus an error term 
e,(t, 6 )  which we will refer to as the fluctuation. In most change-point problems that 
consider only the marginal distribution of the observations (see Lavielle 1999), the 
fluctuation terms e,(t, 6 )  can generally be written as a sum of (possibly dependent) 
variables. In our case, as we are interested in changes in the spectrum, we must deal with 
quadratic forms. However, from (20) and (21) we have that the fluctuation term can be 
written as a sum of 'good' quadratic fluctuation terms Sn(Tk,,ok) and Sn(Tk,, 6;) plus 
certain remainder cross terms Rn(Tki, Tkj , ,  Ok)  and Rn(Tk,,Tk,,, 6;) which can be controlled 
in probability. 

Consistency of (in,6,) is then a direct consequence of the following two facts. First, the 
following lemma which was shown in Lavielle (1999): 

Lemma 3.3. Let u be a function from O X O to R such that v(6' ,  6 )  2 0 and u(6' ,  6 )  = 0 i f  
and only i f  6 = 6 ' .  Then, with the above notation, there exists a constant Ce*>0 such that, 
for any ( t ,  6 )  E YKX O K ,  

* where Ilt - t*lI = ma^,,^,,*-, min1,k,~-11tk - t j  1. 

Second, if Hypotheses 3 and 4 are satisfied, the fluctuation term e,(t, 6 )  converges to 0, 
uniformly in ( t ,  6 ) .  Indeed, using (20), (21) and (24),we remark that, by Lemma 2.4, e,(t, 6 )  
can be decomposed as a finite sum of terms that converge to 0, uniformly in ( t ,  6) .  

For any 6 >0, let us define 7K,s= { t  E Y K ;  lit - t*llcc > nd}. Thus, using Lemma 3.3, 
for any 6 >0, we have, 

inf min U,(t, 6 )  <0 
@ € O K  f ~ . ? - , , , ~  

sup max je,(t, 6)I > inf min u(t ,  6 )  
@ € O K  r € . F K , d  O E Q K  ~ E Y K , ~  

Thus, the right-hand side of (25) goes to 0 as n + m, and tnconverges to z*. 

Since the estimated change-point sequence converges to the true change-point sequence, 
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o~(T,,,) - O,(T;) converges to 0 in probability. Using the fact that o ~ ( T ~ )converges to 07, 
we conclude that en., = en(Tn,,) converges to 0; in probability. 

3.2.3. The rate of convergence 

Once the consistency has been established, we can give bounds for the rate of convergence. 

Theorem 3.4. Assume that Hypotheses 3 and 4 are satisjed. For any 1 S j G K, let
* * h . = h(0, ) = max(2 - 211(8;) - 2a(07), 1). Then, the sequences {f,,, - t,*) and
J 

{-I &,, - 0; / I }  are uniformly tight in probability: 

Remark. Theorem 3.4 states that the rate of convergence of the estimated change-point 
sequence 2, is n-' under very general conditions. Furthermore, this rate does not depend on 
the dependence structure of the process. On the other hand, the fact that the change-point 
instants must be estimated does not affect the rate of convergence of 6,: the rate is still the 
rate of the Whittle estimate, computed with the true change-points. 

ProoJ By Theorem 3.2, for big enough n, the estimated change-point must belong to a 
contiguous time segment. Thus, without any loss of generality, we consider the case of a 
unique change-point t*, and we show that ~ ( i ,- t* 2 6) goes to 0 when 6 and n go to ;x, 
(the case ~ ( t :- i a 6) is obviously identical). 

Since there is only one change-point, we have T;  = (1, 2, . . . , t*) and T; = 
{t* + 1, ... , n). For any 1 G t S n, set TI = (1, 2, . . . , t} and T2 = {t + 1, ... , n). 

Assume that 1 G t* G t S n. We then have TI, = TT, T12= { t* + 1, ..., t) and T22 = 
T2. Also rill = t*, nl2 = t - t* and n22 = n - t. 

For any 1 G t S n, let &(TI) and o,(T~) be the values of 8, and 8 2  that minimize 
Wn(T1,01) and Wn(T2,82). Thus, inis the value of t that minimizes 

with nl = t and n2 = n - t. For any t* G t S  n, we have 
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Since .2, converges to t* in probability, there exists a positive sequence (m,) such that 
m, -+ +cc and m,/n + 0, and such that P(& - t* > m,) -+ 0, when n -+ +m. Write 
T,,,= { t  E B,t* + 6 < t < t* + m,). Part (i) will follow if we show that 

min J,(t) - J,(t*) <0 = 0.? (28) 

We will establish (28)by studying each one of the terms obtained from the decompositions of 
J,(t*) and J,(t*) proposed in (26) and (27): 

(a) W,(Tl I ,&(T:))  s W n ( T l l ,& ( T I ) ) .  Indeed, e , ( ~ : )minimizes w,(T:, el), where 
T T  = T ~ ~ .  

(b) Wn(T12,e , ( ~ , ) )- Wn(T12,&(T;))  converges to u(8T, o:), uniformly on .7,,d. 
Indeed, & ( T I )  converges uniformly on .7,,, to 8:, i = 1 ,  2. Thus, by Lemma 2.4, 
Wn(TI2 ,on(Tt))converges uniformly to wo;(i3:). 

(c) R,(Tl1, T I 2 ,e , ( ~ ~ ) ) / n 1 2and Rn(T22, T12, e n ( ~ ; ) ) / n I 2converge to 0, uniformly on 
Y,,,. This is a direct application of Lemma 2.4. 

(d) (n22/n12)(Wn(T22,o , ( T ~ ) )- Wn(T22,o,(T;))) converges to 0, uniformly over .7,,,. To 
see this, write 

Since doW,(T2, o , (T~ ) )= dow,(T;, &(T,*))= 0, there exists 8 E O such that 

and ( n 2 2 / n 1 2 ) ( e n ( ~ , * )- en(T2))= op( l ) ,uniformly on Y,,,,again by Lemma 2.4. 

Set C* = ~ ( B T ,  w,(T;, 8)l. Then, the proof of (28) is achieved by 
observing that 

Part (ii) follows directly. Indeed since the error nk,k+l = fk - t: = Op (I), we deduce that 
i,(fi)- &(T:)  = o p ( n - ' ) .  Thus, both o, , (T~)and O,(T;) converge to 8; at the rate of 
n 1 - h ~ J 2by emm ma 3.1. 
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3.3. Estimation of the number of change-points 

The results presented in this subsection are straightforward extensions of similar results 
already obtained in different contexts by Lavielle (1999) and Lavielle and Moulines (1999). 
We denote by K* the true unknown number of segments, which is assumed to be bounded by 
a finite constant. First, we can remark that Theorem 3.2 can be generalized to the case 
K 2 K*. 

Lemma 3.5. Let (t,, 8,) be the estimate of (t, 8), obtained by minimizing J,(t, 8) deJined in 
(17), over .7K X OK.  Let ?, = i,/n. Then, under Hypotheses 3 and 4, maxl,,,Kk-l 
minlsrsK-l - t,*1 converges in probabili@ to 0 when n + m, i f  K 2 K*. 

Lemma 3.5 means that, even if the number of segments is fixed to a value K greater than the 
true value K*, a subfamily (?n,k , ,  1 Q j Q K* - 1) of t, still converges to the true 
configuration r* under the hypothesis of Theorem 3.2. 

We will estimate the number of segments K* together with (t*, 8*) by minimizing the 
penalized contrast function 

A convenient choice for the sequence (P,) will ensure the convergence of the estimate. 

Theorem 3.6. Assume that Hypotheses 3 and 4 hold. Let a* = max,,j,,* h; and let (P,) be 
a positive sequence such that 

P n  
n - x  
+ 0; 

na*-2 2 

+=O.P" ,,ZX 
Then, the minimum penalized contrast estimator (K,, in,8,) obtained by minimizing the 

function &(K, z, 8), deJined in (30), over (1, 2, . . . , K) X r~ X OK converges in probahili@ 
to ( K * ,  t*,8*) if K 2 K*. 

Proof: We will show that P(K, # K*) goes to 0 when n -+ cc. 
For any K < K*, we have 

inf minJ,(K, t, 8)  < J,(K*, t*, 8*) 
B t O K  ~ E Z K  

G P( inf m@ (u(t, 8)  + e,(t, 8)) <P,(K* -
~ E Y  t E . / fK 

* Let A, = min,,,,, (t; - t,*_,). From Lemma 3.3, u(t, 8)  h,*/2> 0. On the other c@* 
hand e,(t, 8)  converges to 0 uniformly on .TKX O K .  We use the condition P,, + 0 to 
conclude that lim,,-,P(K, < K*) = 0. 

We now have to show that lim,,,~(~, > K*) = 0. From Lemma 3.5, we know that a 
subfamily of 2, converges to z*. Then we have to show that the penalty term allows us to 
suppress any spurious change-point in any segment of the true configuration. Thus, without 
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loss of generality, we shall consider a particular configuration t* with only one segment and 
show that the probability of detecting a change-point goes to 0 as n -+ x.Let 8* be the 
true value of 8 and let T* = (1,2, . . . , n}.  For any K 2 and for any (t,8)E O KX 

let 

Then 

P(K~= K )  G P inf min Un(t,8)+ (K- 1)Pn< 0 .(&,, ,., 1 
We can easily verify that 

For any 1 S k S K, 

Using Lemma 2.2, we have that, for any 1 S k, k' s K, 

Since -+ +m, these two probabilities go to 0 when n -+ co.Thus, it remains to 
check that, for any 1 s k s K, 

Since O is compact and from the definition of v, there exist C > 0 and A. < m such that, for 
any (8, 8') E O X O, A. 2 u(8, 8') 2 Cll8 - 8'112.This yields 
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sup max A. -
Be@Kn k < n h * / 2  do2 nh*I2 

We use Lemma 2.2 and the fact that n0*-~/3: -++m to conclude that both P,,, and Pn,2go 
to 0 when n i m. 

3.4. A numerical experiment 

We assume that X is a Gaussian ARIMA(0, d, 0) process. That is, X is solution of the 
equation 

where B is the shift operator defined by B(Xn) = X,-l, and where E is a Gaussian white 
noise. Furthermore, we assume that an unknown number of changes affect the parameter d. 
We simulated a series X = (X,, 1 c t < 2000) with the following values of d :  d = 0.25 for 
t E [I ,  5001; d = 0.4 for t E [501, 10001; d = 0.15 for t E [1001, 20001. The variance of the 
white noise remains constant: o: = 1. A realization of this process is displayed Figure l(a). 

The estimated configuration of change-points & is obtained by minimizing the function 
J,(K, r ,  8) defined in (30). 

A histogram of in obtained with 100 realizations of X and /3, =8 is displayed in Figure 
l(b). We point out that two changes were well detected 83 times (K, = 3), one false alarm 
occurred 13 times (K, =4), 2 false alarms occurred twice (I?, = 5) and the first change 
was not detected twice (K, = 2). 

4. Semi-parametric estimation in presence of change-points 

4.1. The model and the estimate 

Using the same methodology, we are also able to address a semi-parametric change-point 
problem. Specifically make the following assumption: 

Hypothesis 5. 
( I )  There exist K* covariance functions yT,y;, . . .,y z *  such thai 

E X ~ X ~ = ~ , * ( ~ - S )i f t , * _ , + l G s G t G t j * .  
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Figure 1. An example with several change-points. (a) The simulated series X: changes are present at 
tT = 500 and t; = 1000. (b) Histogram of the estimated change-point instants fn. 

(ii) There exist a G > 0 and a y > O such that 

EX,X, s G(t - s)-Y if there exists 1 s j s K* - 1 such that s s t; < t .  

(iii) There exists a K > O such that, for any ( t ,  s, t ' ,  s t )  E Z4, 

Icum(X,, X,, X,,, X,,)l < I<IE(X,X,)E(X,,X,,)I. 

Denote by f,* the spectral density of X in segment j of the true configuration t? We 
assume that the changes affect the spectrum of the process over certain previously specified 
frequency bands [L,, i = 1, . . . , N .  

For the sake of simplicity, we assume here that the changes affect the spectrum on a 
unique frequency band [0, L]. The method we develop can be extended directly to the case 
of several frequency bands, as will be done below with an application to real data. 

Let 
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We assume the following hypothesis is satisfied by (F;(A)) and (y,*): 

Hypothesis 6. 

(i) 	For any 1 6  j <  K* - 1, F:(A)# F,*,~(A).  
(ii) There exist 	a1 >0, . . . , aK*>0 and a constant C >0 such that, for any u >0 and 

any 1 < j K*, 

For any configuration of change-points t E .TK,and for any 1 < k < K, set 

where I,(Tk, .) was defined in (13) as the periodogram computed over segment k of t .  We 
know that F,(T,*, A) converges almost surely to F,*(A)when n -,x,for any 1 < j G K*. 
Then it is quite natural to define a contrast function based on this estimate, for detecting 
jumps in ( ~ f  we shall estimate t* by minimizing the contrast(A)). Indeed, function J ,  
defined by 

when the number of change-points is not estimated. On the other hand, K* and t* can be 
estimated simultaneously by minimizing the penalized contrast function 

where conditions over the sequence p, will be given below. Since A is a known fixed value, it 
can be treated as a constant, and the dependence of J ,  and j, with respect to A is omitted. 

In a parametric context, a lower bound for the length of the estimated segments was not 
required. In the nonparametric setting, however, consistent estimators will be found if 
minimization of the contrast functions proposed in (31) and (32) are carried out over the set 
. T K , ~ ,defined by 

. ~ K , A ,= { t  E .?K, th - t k - 1  3 A n ) ,  

where A ,  must be chosen according to the rate of convergence of ( F , ( T ~ ,  A)). 
The following theorem summarizes the properties of these two estimates: 

Theorem 4.1. Assume that Hypotheses 5 and 6 hold. Let h,* = max(2 - 2aT, 1) for any 
1 G J G K*, and let a* = maxi,,,,*h,*. Also let (A,) be a positive sequence such that 

A ,  + ce as n + cc. 

(i) 	Let t, be the estimate of the change-point sequence, obtained as the solution of the 
following minimiziation problem: 
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where Jn was defined in (31). Then, Itn,;- ti*/= Op ( 1 )  for any 1 c j K* - 1. 
(ii) Let (P,) be positive sequence such that 

Then the minimum penalized contrast estimator (K,,, i n /n )  obtained by minimizing the 
function (&(K,  t) ,  defned in (32), over ( 1 ,  2 ,  . . . , K} X TK,Anconverges in probabilitl; 
to ( K * ,z*) i f K  2 K*. 

Proof: We shall show (i) first. For any t = (tk,  1 < k c K - 1), set 

Then, the estimate inminimizes 

un(t )  = Jn(t) - ~ n ( t * )  

where 

The arguments used for the consistency of in in a parametric framework still apply. First, 
from Lemma 3.3, there exists a constant C,* > 0 such that, for any configuration t E TK, 
u(t,  6) 2 CB*n-' 1 1  t - 11,.t* Second, if Hypotheses 5 and 6 are satisfied, the fluctuations 
en( t )  and qn(t )  converge to 0 ,  uniformly over .FK*,A, .  Indeed let (bn(u), u E Z)be the 
sequence defined by 

Then, the decomposition of Sn proposed in (20) and (21) still holds: 

K* K* 
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where 

Since I bL(u)lG 1 u-' I for any u >0, Lemma 2.2 holds with ,8 = 1 : there exists a constant Cs 
such that, for any 1 c k c K*, for any n >0 and for any 6 >0, 

max max -
i G t k _ , s n  tk -~+is tksn  n 

We deduce from (33) that e,(t) converges to 0 when n + cm,uniformly over .FK*.On the 
other hand, again by Lemma 2.2, we have that, for any 1 6 k G K*, for any n >0 and for 
any 6 >0, 

nh*-l  

max si(T k )  2 6) G cS;ii-
l<tk_ ,<n-An tk_i+A.ctkcn n(tk - tk-1) 

Since n l - h * ~ n+ cm, we deduce from (34) that q,(t)  converges to 0 when n + cm, 
uniformly over FK*, ,n .  

Once the consistency of inhas been established, we can assume that qn(in)is negligible 
with respect to en(&)when n + co.Then, a slight adaptation of the proof of Theorem 3.4 
achieves the proof of (i). 

The proof of Theorem 3.6 can also be easily adapted in order to prove (ii). 

Remark. In many applications h* = 1 ,  and then it is enough to require that A ,  + cm as 
n + cm to ensure the consistency of 2,. 

4.2. Application to EEG analysis 

It is well known that the EEG recordings are non-stationary signals (see Biscay et al. 1995). 
Epileptogenic transients are among the phenomena that make the EEG non-stationary. The 
spectral characteristics of the observed series change abruptly at some random instants, and 
the detection of such changes is a crucial step for the interpretation of the recorded brain 
electrical activity. 

The following frequency bands of brain activity are conventionally observed: delta (1.5-
3.5 Hz), theta (3.5-7.5 Hz), alpha (7.5-12.5 Hz), and beta (12.5-19.5 Hz). 

In a more general framework, assume that the spectral measure of the observed process 
changes over some previously chosen frequency bands ([A/ ,A1+l], 0 G 1 G L). Write 
A = (A,, 0 c 1 c L),  and define the vector 
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for any 1 s J for any K*. We assume that Hypothesis 6 is satisfied: F'T(2) # F;- ,(IL) 
1 S j s K* - 1 .  For any configuration of change-points t E .dkk,and for any 1 G k G K, we 
also define 

Since F,,(T~, A) is a vector, F?,(T~, 2) is replaced by / IF,(T~,  A)1I2 in (31) and (32). 
We present in Figure 2 the segmentation of two EEG recordings. We display the 

observed series together with the estimated change-point times (marked by vertical lines), 
and also the estimated spectral measure F,,(T~, 2). 

Time (s) Time (s) 

Figure 2. Segmentation of EEG recordings. (a) Segmentation of theta activity (3.5-7.5 Hz). (b) 
Segmentation of alpha activity (7.5-12.5 Hz). (c), (d) The estimated spectral distributions computed in 
the estimated segments. 
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